Stimulation of erythrocyte cell membrane scrambling by nystatin.

نویسندگان

  • Abaid Malik
  • Rosi Bissinger
  • Kashif Jilani
  • Florian Lang
چکیده

The antifungal ionophore nystatin dissipates the Na(+) and K(+) gradients across the cell membrane, leading to cellular gain of Na(+) and cellular loss of K(+) . The increase of cellular Na(+) concentration may result in Ca(2+) accumulation in exchange for Na(+) . Increase of cytosolic Ca(2+) activity ([Ca(2+) ]i ) and loss of cellular K(+) foster apoptosis-like suicidal erythrocyte death or eryptosis, which is characterised by cell shrinkage and cell membrane scrambling leading to phosphatidylserine exposure at the erythrocyte surface. The present study explored whether nystatin stimulates eryptosis. Cell volume was estimated from forward scatter (FSC), phosphatidylserine exposure from annexin V binding and [Ca(2+) ]i from Fluo3-fluorescence in flow cytometry. A 48-hr exposure to nystatin (15 μg/ml) was followed by a significant increase of [Ca(2+) ]i , a significant increase of annexin V binding and a significant decrease of FSC. The annexin V binding after nystatin treatment was significantly blunted in the nominal absence of extracellular Ca(2+) . Partial replacement of extracellular Na(+) with extracellular K(+) blunted the nystatin-induced erythrocyte shrinkage but increased [Ca(2+) ]i and annexin V binding. Nystatin triggers cell membrane scrambling, an effect at least partially due to entry of extracellular Ca(2+) .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stimulation of Erythrocyte Cell Membrane Scrambling by Quinine.

BACKGROUND/AIMS The analkaloid drug quinine is utilized mainly for the chemoprophylaxis of malaria. The multiple side effects of quinine include hemolytic anemia and hemolytic uremic syndrome, disorders involving suicidal erythrocyte death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signali...

متن کامل

Triggering of Erythrocyte Cell Membrane Scrambling by Emodin.

BACKGROUND/AIMS The natural anthraquinone derivative emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a component of several Chinese medicinal herbal preparations utilized for more than 2000 years. The substance has been used against diverse disorders including malignancy, inflammation and microbial infection. The substance is effective in part by triggering suicidal death or apoptosis. Simil...

متن کامل

Stimulation of erythrocyte death by phloretin.

BACKGROUND Phloretin, a natural component of apples, pears and strawberries, has previously been shown to stimulate apoptosis of nucleated cells. Erythrocytes may similarly enter suicidal death or eryptosis, which is characterized by cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane with phosphatidylserine translocation to the erythrocyte surface. Stimulators of erypto...

متن کامل

Stimulation of Erythrocyte Cell Membrane Scrambling by Mushroom Tyrosinase

BACKGROUND Mushroom tyrosinase, a copper containing enzyme, modifies growth and survival of tumor cells. Mushroom tyrosinase may foster apoptosis, an effect in part due to interference with mitochondrial function. Erythrocytes lack mitochondria but are able to undergo apoptosis-like suicidal cell death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling leading t...

متن کامل

Saquinavir Induced Suicidal Death of Human Erythrocytes.

BACKGROUND/AIMS The antiretroviral protease inhibitor saquinavir is used for the treatment of HIV infections. Effects of saquinavir include induction of apoptosis, the suicidal death of nucleated cells. Saquinavir treatment may further lead to anemia. In theory, anemia could result from accelerated erythrocyte loss by enhanced suicidal erythrocyte death or eryptosis, which is characterized by c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Basic & clinical pharmacology & toxicology

دوره 116 1  شماره 

صفحات  -

تاریخ انتشار 2015